Wen Fan
April 3, 2025

Static verification is a powerful method for enhancing software quality, but it demands significant human labor and resources. This is particularly true of static verifiers that reason about heap manipulating programs using an ownership logic. LLMs have shown promise in a number of software engineering activities, including code generation, test generation, proof generation for theorem provers, and specification generation for static verifiers. However, prior work has not explored how well LLMs can perform specification generation for specifications based in an ownership logic, such as separation logic. To address this gap, this paper explores OpenAI’s GPT-4o model’s effectiveness in generating specifications on C programs that are verifiable with VeriFast, a separation logic based static verifier. Our experiment employs three different types of user inputs as well as basic and Chain-of-Thought (CoT) prompting to assess GPT’s capabilities. Our results indicate that the specifications generated by GPT-4o preserve functional behavior, but struggle to be verifiable.

About Wen Fan

Wen Fan is a PhD student at Purdue ECE, advised by Prof. Jenna DiVincenzo. He is working on leveraging LLMs to generate specifications for program verification. Their current work will be presented at FORGE 2025 (co-located with ICSE).